Cellulose

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Cellulose[1]
Cellulose, a linear polymer of D-glucose units (two are shown) linked by β(1→4)-glycosidic bonds.
Three-dimensional structure of cellulose.
Identifiers
CAS number 9004-34-6 YesY
UNII SMD1X3XO9M YesY
EC-number 232-674-9
ChEMBL CHEMBL1201676 N
Properties
Molecular formula (C
6
H
10
O
5
)
n
Appearance white powder
Density 1.5 g/cm3
Melting point decomposes
Solubility in water none
Hazards
EU Index not listed
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Related compounds Starch
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Cellulose is an organic compound with the formula(公式,方式,決まったやり方) (C
6
H
10
O
5
)
n
, a polysaccharide(多糖類) consisting of a linear(線状に伸びる,線の,直線の,長さの,線形の,線形,一次の,線状の) chain of several hundred to many thousands of β(1→4) linked D-glucose units.[2][3] Cellulose is an important structural(構造(上)の,構造的な) component of the primary cell wall of green plants, many forms of algae(藻類) and the oomycetes. Some species of bacteria(バクテリア) secrete(〜を隠匿する,を分泌する,隠匿する) it to form biofilms.[4] Cellulose is the most abundant organic polymer(重合体,高分子) on Earth.[5] The cellulose(セルロース) content of cotton fiber is 90%, that of wood is 40–50% and that of dried hemp(大麻) is approximately(おおよそ,大体,およそ,ほぼ) 45%.[6][7][8]

Cellulose is mainly used to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative(1.派生した,2.【数学】導関数,3.デリバティブ(金融派生商品,94年になって突然日本の経済関係で目にするようになった用語)) products such as cellophane and rayon. Conversion of cellulose(セルロース) from energy crops into biofuels such as cellulosic ethanol((No gloss)) is under investigation as an alternative fuel source. Cellulose for industrial use is mainly obtained from wood pulp(1.果肉,パルプ,髄(質),歯髄,植物の髄,肉質部,どろどろしたもの,2.(通例〜s)通俗雑誌,パルプマガジン(ざらざらした低質の紙に印刷されていることから),3.パルプにする,どろどろにする) and cotton.[5]

Some animals, particularly ruminants and termites(白蟻), can digest cellulose(セルロース) with the help of symbiotic((No gloss)) micro-organisms((No gloss)) that live in their guts,(1.体から衝動的に出てくる,本能的な,感情的な,本質的な,2.要所を抜き取る,内部を破壊する,要らないものを除く,中身を取出す,4.消化管,内蔵,はらわた,5.中身,本質,勇気,気力,根性,ガッツ,体力,持久力) such as Trichonympha. Humans can digest cellulose(セルロース) to some extent,[9][10] but it mainly acts as a hydrophilic bulking agent for feces(ふん,排出物,糞便(ふんべん),かす) and is often referred to as a "dietary((No gloss)) fiber".

History[edit]

Cellulose was discovered in 1838 by the French chemist Anselme Payen, who isolated it from plant matter and determined its chemical formula.(公式,方式,決まったやり方)[2][11][12] Cellulose was used to produce the first successful thermoplastic polymer(重合体,高分子), celluloid(セルロイド), by Hyatt Manufacturing Company in 1870. Production of rayon ("artificial silk") from cellulose(セルロース) began in the 1890s and cellophane was invented in 1912. Hermann Staudinger determined the polymer(重合体,高分子) structure of cellulose(セルロース) in 1920. The compound was first chemically((No gloss)) synthesized(総合する) (without the use of any biologically derived enzymes(酵素)) in 1992, by Kobayashi and Shoda.[13]

The arrangement of cellulose and other polysaccharides in a plant cell wall.

Structure and properties[edit]

Cellulose has no taste, is odorless,(無臭の) is hydrophilic with the contact angle of 20–30,[14] is insoluble((No gloss)) in water and most organic solvents(解決方法,溶かす,支払能力がある,溶解力のある,溶媒,溶剤 (ref. detergent)), is chiral and is biodegradable((No gloss)). It can be broken down chemically((No gloss)) into its glucose(ぶどう糖) units by treating it with concentrated acids at high temperature.

Cellulose is derived from D-glucose units, which condense through β(1→4)-glycosidic bonds. This linkage(関連,連関) motif(《仏語》主題,モチーフ,基調,動機,飾り,主旨,主調) contrasts with that for α(1→4)-glycosidic bonds present in starch(澱粉,糊,のり,でんぷん質の多い食品,堅苦しさ,糊付けする), glycogen((No gloss)), and other carbohydrates.(炭水化物) Cellulose is a straight chain polymer:(重合体,高分子) unlike starch,(澱粉,糊,のり,でんぷん質の多い食品,堅苦しさ,糊付けする) no coiling(ぐるぐる巻く,コイル,巻きつく,巻く,丸くなる) or branching occurs, and the molecule(分子,微量,微分子,微粒子) adopts an extended and rather stiff rod-like conformation,((No gloss)) aided by the equatorial(赤道の(付近の)) conformation((No gloss)) of the glucose(ぶどう糖) residues.(残余,残留物,かす,留数,剰余,残基) The multiple(複合の,倍数の,複式の,複合的な,倍数,集合性の,多様な) hydroxyl((No gloss)) groups on the glucose(ぶどう糖) from one chain form hydrogen(水素,元素記号H,h) bonds with oxygen atoms on the same or on a neighbor chain, holding the chains firmly(堅く,しっかりと,断固) together side-by-side and forming microfibrils with high tensile strength. This confers(相談する,協議する,授与する, The word "confer" is one that you might not run into very often. "Confer" means to bring about or to bestow.,授ける) tensile strength in cell walls, where cellulose(セルロース) microfibrils are meshed(網目,網の目,網,わな,網で捕らえる,かみ合わせる,協力させる) into a polysaccharide(多糖類) matrix(母体,行列,鋳型).

A triple strand of cellulose showing the hydrogen bonds (cyan lines) between glucose strands

Compared to starch,(澱粉,糊,のり,でんぷん質の多い食品,堅苦しさ,糊付けする) cellulose(セルロース) is also much more crystalline(結晶質). Whereas starch(澱粉,糊,のり,でんぷん質の多い食品,堅苦しさ,糊付けする) undergoes a crystalline(結晶質) to amorphous(1.一定の形を持たない,無定形の,明確な形のない,非結晶の,不定形の,まとまりのない,無構造の,形の定まらない,2.アモルファス,非結晶質) transition when heated beyond 60–70 °C in water (as in cooking), cellulose(セルロース) requires a temperature of 320 °C and pressure of 25 MPa to become amorphous(1.一定の形を持たない,無定形の,明確な形のない,非結晶の,不定形の,まとまりのない,無構造の,形の定まらない,2.アモルファス,非結晶質) in water.[15]

Several different crystalline(結晶質) structures of cellulose(セルロース) are known, corresponding to the location of hydrogen(水素,元素記号H,h) bonds between and within strands.(座礁する(させる),岸に上がる,立ち往生する,取り残す(される),困る(らせる),2.岸,岸辺より糸,房,岸,糸,座礁させる) Natural cellulose(セルロース) is cellulose(セルロース) I, with structures Iα and Iβ. Cellulose produced by bacteria(バクテリア) and algae(藻類) is enriched(金持ちにする,豊かにする,富ませる) in Iα while cellulose(セルロース) of higher plants consists mainly of Iβ. Cellulose in regenerated(再び生じさせる,を改心させる,を更生させる,を再建する,を再生利用する,刷新する,革新する) cellulose(セルロース) fibers is cellulose(セルロース) II. The conversion(転換,換算,兌換,転向,交換,改宗) of cellulose(セルロース) I to cellulose(セルロース) II is irreversible,(逆にできない,逆転できない,撤回不可能の,取り消しできない) suggesting that cellulose(セルロース) I is metastable and cellulose(セルロース) II is stable. With various chemical treatments it is possible to produce the structures cellulose(セルロース) III and cellulose(セルロース) IV.[16]

Many properties of cellulose(セルロース) depend on its chain length or degree of polymerization, the number of glucose(ぶどう糖) units that make up one polymer(重合体,高分子) molecule.(分子,微量,微分子,微粒子) Cellulose from wood pulp(1.果肉,パルプ,髄(質),歯髄,植物の髄,肉質部,どろどろしたもの,2.(通例〜s)通俗雑誌,パルプマガジン(ざらざらした低質の紙に印刷されていることから),3.パルプにする,どろどろにする) has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial((No gloss)) cellulose(セルロース) have chain lengths ranging from 800 to 10,000 units.[5] Molecules with very small chain length resulting from the breakdown of cellulose(セルロース) are known as cellodextrins; in contrast to long-chain cellulose,(セルロース) cellodextrins are typically soluble(溶解できる,(物質が)溶けやすい,(問題が)解決できる,溶性の) in water and organic solvents.(解決方法,溶かす,支払能力がある,溶解力のある,溶媒,溶剤 (ref. detergent))

Plant-derived cellulose(セルロース) is usually found in a mixture with hemicellulose, lignin, pectin((No gloss)) and other substances, while bacterial((No gloss)) cellulose(セルロース) is quite pure, has a much higher water content and higher tensile strength due to higher chain lengths.[5]:3384

Cellulose is soluble(溶解できる,(物質が)溶けやすい,(問題が)解決できる,溶性の) in Schweizer's reagent(試薬), cupriethylenediamine (CED), cadmiumethylenediamine (Cadoxen), N-methylmorpholine N-oxide, and lithium(リチウム) chloride / dimethylacetamide.[17] This is used in the production of regenerated(再び生じさせる,を改心させる,を更生させる,を再建する,を再生利用する,刷新する,革新する) celluloses (such as viscose and cellophane) from dissolving pulp(1.果肉,パルプ,髄(質),歯髄,植物の髄,肉質部,どろどろしたもの,2.(通例〜s)通俗雑誌,パルプマガジン(ざらざらした低質の紙に印刷されていることから),3.パルプにする,どろどろにする). Cellulose is also soluble(溶解できる,(物質が)溶けやすい,(問題が)解決できる,溶性の) in many kinds of ionic liquids.[18]

Cellulose consists of crystalline(結晶質) and amorphous(1.一定の形を持たない,無定形の,明確な形のない,非結晶の,不定形の,まとまりのない,無構造の,形の定まらない,2.アモルファス,非結晶質) regions. By treating it with strong acid, the amorphous(1.一定の形を持たない,無定形の,明確な形のない,非結晶の,不定形の,まとまりのない,無構造の,形の定まらない,2.アモルファス,非結晶質) regions can be broken up, thereby(それによって,その結果) producing nanocrystalline cellulose(セルロース), a novel material with many desirable properties.[19] Recently, nanocrystalline cellulose(セルロース) was used as the filler phase(局面,相,段階,1つの姿,面,位相,を段階的に計画する,段階的に計画する,段階的に導入する) in bio-based((No gloss)) polymer(重合体,高分子) matrices(母体,行列,鋳型) to produce nanocomposites with superior thermal(熱の,温度の,熱による,温泉の,暖かい,上昇温暖気流,熱を持っている) and mechanical properties.[20]

Processing[edit]

Assay[edit]

Given a cellulose-containing(セルロース) material, the carbohydrate(炭水化物) portion that does((No gloss)) not dissolve in a 17.5% solution of sodium(【化学】ナトリウム,ソジウム) hydroxide at 20 °C is α cellulose(セルロース), which is true cellulose(セルロース)[clarification(1.浄化,2.説明,解明(making clear and intelligible)) needed]. Acidification of the extract(書物から〜を抜粋する,引抜く,栓を抜く,理論を推論する,快楽を引き出す,抽出物,エキス,抜粋,引き出す) precipitates(1.投げ落とす,凝結させる,早める,促進する,沈殿させる,真逆様に落とす,急がせる,2.沈澱物) β cellulose(セルロース). The portion that dissolves in base but does((No gloss)) not precipitate(1.投げ落とす,凝結させる,早める,促進する,沈殿させる,真逆様に落とす,急がせる,2.沈澱物) with acid is γ cellulose(セルロース)[citation(引用(quotation, reference)) needed].

Cellulose can be assayed(検査をする,評価する,検定する,含有量(率)を示す) using a method described by Updegraff in 1969, where the fiber is dissolved in acetic(酸っぱい,酢の) and nitric acid to remove lignin, hemicellulose, and xylosans. The resulting cellulose(セルロース) is allowed to react with anthrone in sulfuric acid. The resulting coloured((No gloss)) compound is assayed(検査をする,評価する,検定する,含有量(率)を示す) spectrophotometrically at a wavelength(波長;略:WL) of approximately(おおよそ,大体,およそ,ほぼ) 635 nm.

In addition, cellulose(セルロース) is represented by the difference between acid detergent((合成)洗剤,(各種)洗浄剤;(潤滑油などに用いる)溶剤) fiber (ADF) and acid detergent((合成)洗剤,(各種)洗浄剤;(潤滑油などに用いる)溶剤) lignin (ADL).

Biosynthesis[edit]

In vascular((No gloss)) plants cellulose(セルロース) is synthesized(総合する) at the plasma(プラズマ,血漿,リンパ漿,乳漿,原形質) membrane(薄膜,膜,皮膜,膜組織) by rosette terminal(1.死に至る,最終の,末端の,2.端子,ターミナル,3.(バス・鉄道などの)終点,終着点[場],4.【コンピュータ】端末) complexes (RTCs). The RTCs are hexameric protein(タンパク質,蛋白質,たん白質) structures, approximately(おおよそ,大体,およそ,ほぼ) 25 nm in diameter,(直径,倍率) that contain the cellulose(セルロース) synthase enzymes(酵素) that synthesise the individual cellulose(セルロース) chains.[21] Each RTC floats in the cell's plasma(プラズマ,血漿,リンパ漿,乳漿,原形質) membrane(薄膜,膜,皮膜,膜組織) and "spins" a microfibril into the cell wall.

RTCs contain at least three different cellulose(セルロース) synthases, encoded(符合化する) by CesA genes,(遺伝子) in an unknown stoichiometry.[22] Separate sets of CesA genes(遺伝子) are involved in primary and secondary cell wall biosynthesis.

Cellulose synthesis(総合,統合,合成,組み立て,総合体) requires chain initiation(始動,創始) and elongation, and the two processes are separate. CesA glucosyltransferase initiates(1.始める,起こす,創始する,着手する,2.加入させる,手ほどきする,3.入会者,4.新入りの) cellulose(セルロース) polymerization using a steroid((No gloss)) primer,(点火装置,活字,雷管,入門書,手引書) sitosterol-beta-glucoside, and UDP-glucose.[23] Cellulose synthase utilizes(〜を利用する,役立たせる,利用する) UDP-D-glucose precursors(先駆者,先駆物質) to elongate(長くする) the growing cellulose(セルロース) chain. A cellulase((No gloss)) may function to cleave(道を切り進む,(材木などを)切り裂く,執着する,裂く,割る,突き進む,分け進む,割れる,裂ける) the primer(点火装置,活字,雷管,入門書,手引書) from the mature chain.

Cellulose is also synthesised by animals, particularly in the tests of ascidians (where the cellulose(セルロース) was historically(歴史的に,歴史上) termed "tunicine") although it is also a minor component of mammalian((No gloss)) connective(【文法】連結詞) tissue.[24]

Breakdown (cellulolysis)[edit]

Cellulolysis is the process of breaking down cellulose(セルロース) into smaller polysaccharides called cellodextrins or completely into glucose(ぶどう糖) units; this is a hydrolysis((No gloss)) reaction. Because cellulose(セルロース) molecules(分子,微量,微分子,微粒子) bind strongly to each other, cellulolysis is relatively difficult compared to the breakdown of other polysaccharides.[25] However, this process can be significantly(きわめて,意味深く,意味ありげに) intensified(強める,一層激しくする,一層激しくなる,強烈にする) in a proper solvent,(解決方法,溶かす,支払能力がある,溶解力のある,溶媒,溶剤 (ref. detergent)) e.g. in an ionic liquid. [26] Most mammals have only very limited ability to digest dietary((No gloss)) fibres such as cellulose.(セルロース) Some ruminants like cows and sheep contain certain symbiotic((No gloss)) anaerobic((No gloss)) bacteria(バクテリア) (like Cellulomonas) in the flora of the rumen, and these bacteria(バクテリア) produce enzymes(酵素) called cellulases that help the microorganism((No gloss)) to break down cellulose;(セルロース) the breakdown products are then used by the bacteria(バクテリア) for proliferation.(増殖,急増) The bacterial((No gloss)) mass is later digested by the ruminant in its digestive(消化剤,消化の) system (stomach and small intestine).(腸,小腸,大腸) Similarly, lower termites(白蟻) contain in their hindguts certain flagellate protozoa((No gloss)) which produce such enzymes;(酵素) higher termites(白蟻) contain bacteria(バクテリア) for the job. Some termites(白蟻) may also produce cellulase((No gloss)) of their own.[27] Fungi, which in nature are responsible for recycling of nutrients,(栄養物,食物,栄養がある) are also able to break down cellulose.(セルロース)

The enzymes(酵素) utilized(〜を利用する,役立たせる,利用する) to cleave(道を切り進む,(材木などを)切り裂く,執着する,裂く,割る,突き進む,分け進む,割れる,裂ける) the glycosidic linkage(関連,連関) in cellulose(セルロース) are glycoside hydrolases including endo-acting cellulases and exo-acting glucosidases. Such enzymes(酵素) are usually secreted(〜を隠匿する,を分泌する,隠匿する) as part of multienzyme complexes that may include dockerins and carbohydrate-binding(炭水化物) modules(測定基準,モジュール).[28]

Hemicellulose[edit]

Main article: Hemicellulose

Hemicellulose is a polysaccharide(多糖類) related to cellulose(セルロース) that comprises(包含する,包む,含む,意味する,構成する,成り立つ,成る) about 20% of the biomass of most plants. In contrast to cellulose,(セルロース) hemicellulose is derived from several sugars in addition to glucose(ぶどう糖), especially xylose but also including mannose, galactose, rhamnose, and arabinose. Hemicellulose consists of shorter chains – around 200 sugar units. Furthermore, hemicellulose is branched, whereas(1.ところが,〜であるのに,一方,2.〜なるが故に,★=while, on the contrary) cellulose(セルロース) is unbranched.

Derivatives[edit]

The hydroxyl((No gloss)) groups (-OH) of cellulose(セルロース) can be partially(部分的に(in part),一部分,不十分に,不公平に,一部分は,っ部分的に,不完全に) or fully reacted with various reagents to afford derivatives(1.派生した,2.【数学】導関数,3.デリバティブ(金融派生商品,94年になって突然日本の経済関係で目にするようになった用語)) with useful properties like mainly cellulose(セルロース) esters and cellulose(セルロース) ethers (-OR). In principle, though not always in current industrial practice, cellulosic polymers(重合体,高分子) are renewable(継続する) resources.

Ester derivatives(1.派生した,2.【数学】導関数,3.デリバティブ(金融派生商品,94年になって突然日本の経済関係で目にするようになった用語)) include:

Cellulose ester Reagent Example Reagent Group R
Organic esters Organic acids Cellulose acetate Acetic acid and acetic anhydride H or -(C=O)CH3
Cellulose triacetate Acetic acid and acetic anhydride -(C=O)CH3
Cellulose propionate Propanoic acid H or -(C=O)CH2CH3
Cellulose acetate propionate (CAP) Acetic acid and propanoic acid H or -(C=O)CH3 or -(C=O)CH2CH3
Cellulose acetate butyrate (CAB) Acetic acid and butyric acid H or -(C=O)CH3 or -(C=O)CH2CH2CH3
Inorganic esters Inorganic acids Nitrocellulose (cellulose nitrate) Nitric acid or another powerful nitrating agent H or -NO2
Cellulose sulfate Sulfuric acid or another powerful sulfuring agent H or -SO3H

The cellulose(セルロース) acetate and cellulose(セルロース) triacetate are film- and fiber-forming materials that find a variety of uses. The nitrocellulose was initially used as an explosive and was an early film forming material. With camphor, nitrocellulose gives celluloid(セルロイド).

Ether derivatives(1.派生した,2.【数学】導関数,3.デリバティブ(金融派生商品,94年になって突然日本の経済関係で目にするようになった用語)) include:

Cellulose ethers Reagent Example Reagent Group R = H or Water solubility Application E number
Alkyl Halogenoalkanes Methylcellulose Chloromethane -CH3 Cold water soluble E461
Ethylcellulose Chloroethane -CH2CH3 Water insoluble A commercial thermoplastic used in coatings, inks, binders, and controlled-release drug tablets E462
Ethyl methyl cellulose Chloromethane and chloroethane -CH3 or -CH2CH3 E465
Hydroxyalkyl Epoxides Hydroxyethyl cellulose Ethylene oxide -CH2CH2OH Cold/hot water soluble Gelling and thickening agent
Hydroxypropyl cellulose (HPC) Propylene oxide -CH2CH(OH)CH3 Cold water soluble E463
Hydroxyethyl methyl cellulose Chloromethane and ethylene oxide -CH3 or -CH2CH2OH Cold water soluble Production of cellulose films
Hydroxypropyl methyl cellulose (HPMC) Chloromethane and propylene oxide -CH3 or -CH2CH(OH)CH3 Cold water soluble Viscosity modifier, gelling, foaming and binding agent E464
Ethyl hydroxyethyl cellulose Chloroethane and ethylene oxide -CH2CH3 or—CH2CH2OH E467
Carboxyalkyl Halogenated carboxylic acids Carboxymethyl cellulose (CMC) Chloroacetic acid -CH2COOH Cold/Hot water soluble Often used as its sodium salt, sodium carboxymethyl cellulose (NaCMC) E466

The sodium(【化学】ナトリウム,ソジウム) carboxymethyl cellulose(セルロース) can be cross-linked to give the croscarmellose sodium(【化学】ナトリウム,ソジウム) (E468) for use as a disintegrant in pharmaceutical(調剤学の,製薬の,薬剤の,薬学の,薬局の,製薬,調合薬) formulations.

Applications[edit]

Cotton fibres represent the purest natural form of cellulose, containing more than 90% of this polysaccharide.

Cellulose for industrial use is mainly obtained from wood pulp(1.果肉,パルプ,髄(質),歯髄,植物の髄,肉質部,どろどろしたもの,2.(通例〜s)通俗雑誌,パルプマガジン(ざらざらした低質の紙に印刷されていることから),3.パルプにする,どろどろにする) and cotton.[5] The kraft process is used to separate cellulose(セルロース) from lignin, another major component of plant matter.

Paper products[edit]

Cellulose is the major constituent(1.構成要素,構成物質,2.構成[成分]の,組成の,成分を成す) of paper, paperboard, and card stock.

Fibers[edit]

Cellulose is the main ingredient(内容物,要素,成分,材料,構成要素,要因) of textiles(織物,編物(の),織物の) made from cotton, linen, and other plant fibers. It can be turned into rayon, an important fiber that has been used for textiles(織物,編物(の),織物の) since the beginning of the 20th century. Both cellophane and rayon are known as "regenerated cellulose(セルロース) fibers"; they are identical(一致する,同じ,等しい,同一の) to cellulose(セルロース) in chemical structure and are usually made from dissolving pulp(1.果肉,パルプ,髄(質),歯髄,植物の髄,肉質部,どろどろしたもの,2.(通例〜s)通俗雑誌,パルプマガジン(ざらざらした低質の紙に印刷されていることから),3.パルプにする,どろどろにする) via viscose. A more recent and environmentally((No gloss)) friendly method to produce a form of rayon is the Lyocell process.

Consumables[edit]

Microcrystalline cellulose(セルロース) (E460i) and powdered cellulose(セルロース) (E460ii) are used as inactive(活動しない,怠惰な,緩慢な,受身的な,不活発な) fillers in drug tablets(平板,書き板,錠剤,タブレット)[29] and as thickeners and stabilizers(スタビライザ,一般的に,あるものの変動を抑えて,安定させるための装置) in processed foods. Cellulose powder is, for example, used in Kraft's Parmesan cheese to prevent caking inside the tube.

Science[edit]

Cellulose is used in the laboratory as a stationary(動かない,静止した,定常,静止している) phase(局面,相,段階,1つの姿,面,位相,を段階的に計画する,段階的に計画する,段階的に導入する) for thin layer chromatography(【化学】クラマトグラフィー). Cellulose fibers are also used in liquid filtration((No gloss)), sometimes in combination with diatomaceous earth or other filtration((No gloss)) media, to create a filter bed of inert((No gloss)) material.

Energy crops[edit]

Main article: Energy crop

The major combustible(燃えやすい,可燃性の) component of non-food energy crops is cellulose,(セルロース) with lignin second. Non-food energy crops produce more usable(使用できる) energy than edible(食用になる,食べられる,食用品,食用の) energy crops (which have a large starch(澱粉,糊,のり,でんぷん質の多い食品,堅苦しさ,糊付けする) component), but still compete with food crops for agricultural land and water resources.[30] Typical non-food energy crops include industrial hemp(大麻) (though outlawed(無法者,追放する,禁止する,時効にする) in some countries), switchgrass, Miscanthus, Salix(willow(【植物】ヤナギ,柳,やなぎば色(柳の葉の色に似たややくすんだ淡い黄みどり色),柳材)), and Populus (poplar) species.

A strand of cellulose (conformation Iα), showing the hydrogen bonds (dashed) within and between cellulose molecules.

Biofuel[edit]

TU-103, a strain of Clostridium bacteria(バクテリア) found in zebra waste, can convert nearly any form of cellulose(セルロース) into butanol fuel.[31][32]

Building material[edit]

Hydroxyl bonding of cellulose(セルロース) in water produces a sprayable, moldable material as an alternative to the use of plastics and resins.(樹脂) The recyclable material can be made water- and fire-resistant. It provides sufficient strength for use as a building material.[33]

Cellulose insulation(隔離,絶縁,絶縁材) made from recycled paper is becoming popular as an environmentally((No gloss)) preferable(いっそうよい,むしろ好ましい,望ましい) material for building insulation(隔離,絶縁,絶縁材). It can be treated with boric acid as a fire retardant.

Miscellaneous[edit]

Cellulose can be converted into cellophane, a thin transparent(透明な,明白な,透き通る,透けてみえる,薄い,率直な,わかりやすい,見え見えの,透き通っている,平明な) film.

Cellulose is the raw material in the manufacture of nitrocellulose (cellulose nitrate)(硝酸塩) which is used in smokeless gunpowder((No gloss)). It is the base material for the celluloid(セルロイド) that was used for photographic and movie films until the mid-1930s.(中間の,中央の)

Cellulose is used to make water-soluble adhesives(付着力のある,粘着性の,記憶から消えない) and binders((No gloss)) such as methyl cellulose(セルロース) and carboxymethyl cellulose(セルロース) which are used in wallpaper(壁紙,壁紙を張る) paste.

Cellulose is further used to make hydrophilic and highly absorbent(吸収できる,吸収性の) sponges.

References[edit]

  1. ^ Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri (2002). "Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction". J. Am. Chem. Soc 124 (31): 9074–82. doi:10.1021/ja0257319. PMID 12149011. 
  2. ^ a b Crawford, R. L. (1981). Lignin biodegradation and transformation. New York: John Wiley and Sons. ISBN 0-471-05743-6. 
  3. ^ Updegraff DM (1969). "Semimicro determination of cellulose in biological materials". Analytical Biochemistry 32 (3): 420–424. doi:10.1016/S0003-2697(69)80009-6. PMID 5361396. 
  4. ^ Romeo, Tony (2008). Bacterial biofilms. Berlin: Springer. pp. 258–263. ISBN 978-3-540-75418-3. 
  5. ^ a b c d e Klemm, Dieter; Heublein, Brigitte; Fink, Hans-Peter; Bohn, Andreas (6 September 2005). "Cellulose: Fascinating Biopolymer and Sustainable Raw Material". ChemInform 36 (36). doi:10.1002/chin.200536238. 
  6. ^ Cellulose. (2008). In Encyclopædia Britannica. Retrieved January 11, 2008, from Encyclopædia Britannica Online.
  7. ^ Chemical Composition of Wood. ipst.gatech.edu.
  8. ^ Piotrowski, Stephan and Carus, Michael (May 2011) Multi-criteria evaluation of lignocellulosic niche crops for use in biorefinery processes. nova-Institut GmbH, Hürth, Germany.
  9. ^ Slavin, JL; Brauer, PM; Marlett, JA (1981). "Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects". The Journal of Nutrition 111 (2): 287–97. PMID 6257867. 
  10. ^ Joshi, S; Agte, V (1995). "Digestibility of dietary fiber components in vegetarian men". Plant foods for human nutrition (Dordrecht, Netherlands) 48 (1): 39–44. doi:10.1007/BF01089198. PMID 8719737. 
  11. ^ Payen, A. (1838) "Mémoire sur la composition du tissu propre des plantes et du ligneux" (Memoir on the composition of the tissue of plants and of woody [material]), Comptes rendus, vol. 7, pp. 1052–1056. Payen added appendices to this paper on December 24, 1838 (see: Comptes rendus, vol. 8, p. 169 (1839)) and on February 4, 1839 (see: Comptes rendus, vol. 9, p. 149 (1839)). A committee of the French Academy of Sciences reviewed Payen's findings in : Jean-Baptiste Dumas (1839) "Rapport sur un mémoire de M. Payen, relatif à la composition de la matière ligneuse" (Report on a memoir of Mr. Payen, regarding the composition of woody matter), Comptes rendus, vol. 8, pp. 51–53. In this report, the word "cellulose" is coined and author points out the similarity between the empirical formula of cellulose and that of "dextrine" (starch). The above articles are reprinted in: Brongniart and Guillemin, eds., Annales des sciences naturelles ..., 2nd series, vol. 11 (Paris, France: Crochard et Cie., 1839), pp. 21–31.
  12. ^ Young, Raymond (1986). Cellulose structure modification and hydrolysis. New York: Wiley. ISBN 0-471-82761-4. 
  13. ^ Kobayashi, Shiro; Kashiwa, Keita; Shimada, Junji; Kawasaki, Tatsuya; Shoda, Shin-ichiro (1992). "Enzymatic polymerization: The first in vitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase". Makromolekulare Chemie. Macromolecular Symposia. 54–55 (1): 509–518. doi:10.1002/masy.19920540138. 
  14. ^ Bishop, Charles A., ed. (2007). Vacuum deposition onto webs, films, and foils. p. 165. ISBN 0-8155-1535-9. 
  15. ^ Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki (2006). "Cooking cellulose in hot and compressed water". Chemical Communications (31): 3293. doi:10.1039/b605812d. 
  16. ^ Structure and morphology of cellulose by Serge Pérez and William Mackie, CERMAV-CNRS, 2001. Chapter IV.
  17. ^ Stenius, Per (2000). "Ch. 1". Forest Products Chemistry. Papermaking Science and Technology. Vol. 3. Finland: Fapet OY. p. 35. ISBN 952-5216-03-9. 
  18. ^ H. Wang, G. Gurau, and R. D. Rogers. "Ionic liquid processing of cellulose." Green Chemistry, 2012, vol. 41, p. 1519-1537
  19. ^ Peng, B. L., Dhar, N., Liu, H. L. and Tam, K. C. (2011). "Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective". The Canadian Journal of Chemical Engineering 89 (5): 1191–1206. doi:10.1002/cjce.20554. 
  20. ^ Pranger, L.; Tannenbaum, R. (2008). "Biobased Nanocomposites Prepared by in Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay". Macromolecules 41 (22): 8682. doi:10.1021/ma8020213.  edit
  21. ^ Kimura, S; Laosinchai, W; Itoh, T; Cui, X; Linder, CR; Brown Jr, RM (1999). "Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis". The Plant cell 11 (11): 2075–86. doi:10.2307/3871010. JSTOR 3871010. PMC 144118. PMID 10559435. 
  22. ^ Taylor, N. G. (2003). "Interactions among three distinct CesA proteins essential for cellulose synthesis". Proceedings of the National Academy of Sciences 100 (3): 1450. doi:10.1073/pnas.0337628100. 
  23. ^ Peng, L; Kawagoe, Y; Hogan, P; Delmer, D (2002). "Sitosterol-beta-glucoside as primer for cellulose synthesis in plants". Science 295 (5552): 147–50. doi:10.1126/science.1064281. PMID 11778054. 
  24. ^ Endean, R (1961). "The Test of the Ascidian, Phallusia mammillata". Quarterly Journal of Microscopical Science 102 (1): 107–117. 
  25. ^ Barkalow, David G. and Whistler, Roy L. "Cellulose". AccessScience, McGraw-Hill. 
  26. ^ Ignatyev, Igor; Charlie Van Doorslaer; Pascal G.N. Mertens; Koen Binnemans; Dirk. E. de Vos (2011). "Synthesis of glucose esters from cellulose in ionic liquids". Holzforschung 66 (4): 417–425. doi:10.1515/hf.2011.161. 
  27. ^ Tokuda, G; Watanabe, H (22 June 2007). "Hidden cellulases in termites: revision of an old hypothesis". Biology Letters 3 (3): 336–339. doi:10.1098/rsbl.2007.0073. PMC 2464699. PMID 17374589. 
  28. ^ Brás, Natércia; N. M. F. S. A. Cerqueira, P. A. Fernandes, M. J. Ramos (2008). "Carbohydrate Binding Modules from family 11: Understanding the binding mode of polysaccharides". International Journal of Quantum Chemistry 108 (11): 2030–2040. doi:10.1002/qua.21755. 
  29. ^ Weiner, Myra L.; Lois A. Kotkoskie (2000). Excipient Toxicity and Safety. New York ; Dekker. p. 210. ISBN 0-8247-8210-0. 
  30. ^ Holt-Gimenez, Eric (2007). Biofuels: Myths of the Agrofuels Transition. Backgrounder. Institute for Food and Development Policy, Oakland, CA. 13:2 [1] [2]
  31. ^ Kathryn Hobgood Ray (August 25, 2011). "Cars Could Run on Recycled Newspaper, Tulane Scientists Say". Tulane University news webpage. Tulane University. Retrieved March 14, 2012. 
  32. ^ Laurie Balbo (January 29, 2012). "Put a Zebra in Your Tank: A Chemical Crapshoot?". Greenprophet.com. Retrieved November 17, 2012. 
  33. ^ "Zeoform: The eco-friendly building material of the future?". Gizmag.com. Retrieved 2013-08-30. 

External links[edit]